Aliases: C22.58C24⋊C5, C22.2(C24⋊C5), C2.(2- (1+4)⋊C5), SmallGroup(320,1012)
Series: Derived ►Chief ►Lower central ►Upper central
C22.58C24 — C22.58C24⋊C5 |
Subgroups: 182 in 28 conjugacy classes, 7 normal (4 characteristic)
C1, C2 [×3], C4 [×3], C22, C5, C2×C4 [×3], C10 [×3], C42, C4⋊C4 [×6], C2×C10, C42.C2 [×3], C22.58C24, C22.58C24⋊C5
Quotients:
C1, C5, C24⋊C5, 2- (1+4)⋊C5 [×3], C22.58C24⋊C5
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=g5=1, c2=f2=a, d2=e2=b, ab=ba, dcd-1=ac=ca, fdf-1=ad=da, ae=ea, af=fa, ag=ga, ece-1=gfg-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, fcf-1=abc, gcg-1=abcde, ede-1=abd, gdg-1=abcd, ef=fe, geg-1=bcdef >
(1 2)(3 4)(5 31)(6 32)(7 33)(8 34)(9 30)(10 22)(11 23)(12 24)(13 20)(14 21)(15 54)(16 50)(17 51)(18 52)(19 53)(25 42)(26 43)(27 44)(28 40)(29 41)(35 60)(36 61)(37 62)(38 63)(39 64)(45 57)(46 58)(47 59)(48 55)(49 56)
(1 4)(2 3)(5 24)(6 20)(7 21)(8 22)(9 23)(10 34)(11 30)(12 31)(13 32)(14 33)(15 44)(16 40)(17 41)(18 42)(19 43)(25 52)(26 53)(27 54)(28 50)(29 51)(35 49)(36 45)(37 46)(38 47)(39 48)(55 64)(56 60)(57 61)(58 62)(59 63)
(1 48 2 55)(3 64 4 39)(5 43 31 26)(6 45 32 57)(7 10 33 22)(8 21 34 14)(9 37 30 62)(11 58 23 46)(12 53 24 19)(13 61 20 36)(15 18 54 52)(16 63 50 38)(17 49 51 56)(25 44 42 27)(28 47 40 59)(29 60 41 35)
(1 8 4 22)(2 34 3 10)(5 25 24 52)(6 16 20 40)(7 55 21 64)(9 49 23 35)(11 60 30 56)(12 18 31 42)(13 28 32 50)(14 39 33 48)(15 26 44 53)(17 46 41 37)(19 54 43 27)(29 62 51 58)(36 47 45 38)(57 63 61 59)
(1 6 4 20)(2 32 3 13)(5 58 24 62)(7 47 21 38)(8 28 22 50)(9 19 23 43)(10 16 34 40)(11 26 30 53)(12 37 31 46)(14 63 33 59)(15 49 44 35)(17 52 41 25)(18 29 42 51)(27 60 54 56)(36 39 45 48)(55 61 64 57)
(1 35 2 60)(3 56 4 49)(5 47 31 59)(6 15 32 54)(7 37 33 62)(8 30 34 9)(10 23 22 11)(12 63 24 38)(13 27 20 44)(14 58 21 46)(16 43 50 26)(17 55 51 48)(18 36 52 61)(19 28 53 40)(25 57 42 45)(29 39 41 64)
(5 6 7 8 9)(10 11 12 13 14)(15 16 17 18 19)(20 21 22 23 24)(25 26 27 28 29)(30 31 32 33 34)(35 36 37 38 39)(40 41 42 43 44)(45 46 47 48 49)(50 51 52 53 54)(55 56 57 58 59)(60 61 62 63 64)
G:=sub<Sym(64)| (1,2)(3,4)(5,31)(6,32)(7,33)(8,34)(9,30)(10,22)(11,23)(12,24)(13,20)(14,21)(15,54)(16,50)(17,51)(18,52)(19,53)(25,42)(26,43)(27,44)(28,40)(29,41)(35,60)(36,61)(37,62)(38,63)(39,64)(45,57)(46,58)(47,59)(48,55)(49,56), (1,4)(2,3)(5,24)(6,20)(7,21)(8,22)(9,23)(10,34)(11,30)(12,31)(13,32)(14,33)(15,44)(16,40)(17,41)(18,42)(19,43)(25,52)(26,53)(27,54)(28,50)(29,51)(35,49)(36,45)(37,46)(38,47)(39,48)(55,64)(56,60)(57,61)(58,62)(59,63), (1,48,2,55)(3,64,4,39)(5,43,31,26)(6,45,32,57)(7,10,33,22)(8,21,34,14)(9,37,30,62)(11,58,23,46)(12,53,24,19)(13,61,20,36)(15,18,54,52)(16,63,50,38)(17,49,51,56)(25,44,42,27)(28,47,40,59)(29,60,41,35), (1,8,4,22)(2,34,3,10)(5,25,24,52)(6,16,20,40)(7,55,21,64)(9,49,23,35)(11,60,30,56)(12,18,31,42)(13,28,32,50)(14,39,33,48)(15,26,44,53)(17,46,41,37)(19,54,43,27)(29,62,51,58)(36,47,45,38)(57,63,61,59), (1,6,4,20)(2,32,3,13)(5,58,24,62)(7,47,21,38)(8,28,22,50)(9,19,23,43)(10,16,34,40)(11,26,30,53)(12,37,31,46)(14,63,33,59)(15,49,44,35)(17,52,41,25)(18,29,42,51)(27,60,54,56)(36,39,45,48)(55,61,64,57), (1,35,2,60)(3,56,4,49)(5,47,31,59)(6,15,32,54)(7,37,33,62)(8,30,34,9)(10,23,22,11)(12,63,24,38)(13,27,20,44)(14,58,21,46)(16,43,50,26)(17,55,51,48)(18,36,52,61)(19,28,53,40)(25,57,42,45)(29,39,41,64), (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)(25,26,27,28,29)(30,31,32,33,34)(35,36,37,38,39)(40,41,42,43,44)(45,46,47,48,49)(50,51,52,53,54)(55,56,57,58,59)(60,61,62,63,64)>;
G:=Group( (1,2)(3,4)(5,31)(6,32)(7,33)(8,34)(9,30)(10,22)(11,23)(12,24)(13,20)(14,21)(15,54)(16,50)(17,51)(18,52)(19,53)(25,42)(26,43)(27,44)(28,40)(29,41)(35,60)(36,61)(37,62)(38,63)(39,64)(45,57)(46,58)(47,59)(48,55)(49,56), (1,4)(2,3)(5,24)(6,20)(7,21)(8,22)(9,23)(10,34)(11,30)(12,31)(13,32)(14,33)(15,44)(16,40)(17,41)(18,42)(19,43)(25,52)(26,53)(27,54)(28,50)(29,51)(35,49)(36,45)(37,46)(38,47)(39,48)(55,64)(56,60)(57,61)(58,62)(59,63), (1,48,2,55)(3,64,4,39)(5,43,31,26)(6,45,32,57)(7,10,33,22)(8,21,34,14)(9,37,30,62)(11,58,23,46)(12,53,24,19)(13,61,20,36)(15,18,54,52)(16,63,50,38)(17,49,51,56)(25,44,42,27)(28,47,40,59)(29,60,41,35), (1,8,4,22)(2,34,3,10)(5,25,24,52)(6,16,20,40)(7,55,21,64)(9,49,23,35)(11,60,30,56)(12,18,31,42)(13,28,32,50)(14,39,33,48)(15,26,44,53)(17,46,41,37)(19,54,43,27)(29,62,51,58)(36,47,45,38)(57,63,61,59), (1,6,4,20)(2,32,3,13)(5,58,24,62)(7,47,21,38)(8,28,22,50)(9,19,23,43)(10,16,34,40)(11,26,30,53)(12,37,31,46)(14,63,33,59)(15,49,44,35)(17,52,41,25)(18,29,42,51)(27,60,54,56)(36,39,45,48)(55,61,64,57), (1,35,2,60)(3,56,4,49)(5,47,31,59)(6,15,32,54)(7,37,33,62)(8,30,34,9)(10,23,22,11)(12,63,24,38)(13,27,20,44)(14,58,21,46)(16,43,50,26)(17,55,51,48)(18,36,52,61)(19,28,53,40)(25,57,42,45)(29,39,41,64), (5,6,7,8,9)(10,11,12,13,14)(15,16,17,18,19)(20,21,22,23,24)(25,26,27,28,29)(30,31,32,33,34)(35,36,37,38,39)(40,41,42,43,44)(45,46,47,48,49)(50,51,52,53,54)(55,56,57,58,59)(60,61,62,63,64) );
G=PermutationGroup([(1,2),(3,4),(5,31),(6,32),(7,33),(8,34),(9,30),(10,22),(11,23),(12,24),(13,20),(14,21),(15,54),(16,50),(17,51),(18,52),(19,53),(25,42),(26,43),(27,44),(28,40),(29,41),(35,60),(36,61),(37,62),(38,63),(39,64),(45,57),(46,58),(47,59),(48,55),(49,56)], [(1,4),(2,3),(5,24),(6,20),(7,21),(8,22),(9,23),(10,34),(11,30),(12,31),(13,32),(14,33),(15,44),(16,40),(17,41),(18,42),(19,43),(25,52),(26,53),(27,54),(28,50),(29,51),(35,49),(36,45),(37,46),(38,47),(39,48),(55,64),(56,60),(57,61),(58,62),(59,63)], [(1,48,2,55),(3,64,4,39),(5,43,31,26),(6,45,32,57),(7,10,33,22),(8,21,34,14),(9,37,30,62),(11,58,23,46),(12,53,24,19),(13,61,20,36),(15,18,54,52),(16,63,50,38),(17,49,51,56),(25,44,42,27),(28,47,40,59),(29,60,41,35)], [(1,8,4,22),(2,34,3,10),(5,25,24,52),(6,16,20,40),(7,55,21,64),(9,49,23,35),(11,60,30,56),(12,18,31,42),(13,28,32,50),(14,39,33,48),(15,26,44,53),(17,46,41,37),(19,54,43,27),(29,62,51,58),(36,47,45,38),(57,63,61,59)], [(1,6,4,20),(2,32,3,13),(5,58,24,62),(7,47,21,38),(8,28,22,50),(9,19,23,43),(10,16,34,40),(11,26,30,53),(12,37,31,46),(14,63,33,59),(15,49,44,35),(17,52,41,25),(18,29,42,51),(27,60,54,56),(36,39,45,48),(55,61,64,57)], [(1,35,2,60),(3,56,4,49),(5,47,31,59),(6,15,32,54),(7,37,33,62),(8,30,34,9),(10,23,22,11),(12,63,24,38),(13,27,20,44),(14,58,21,46),(16,43,50,26),(17,55,51,48),(18,36,52,61),(19,28,53,40),(25,57,42,45),(29,39,41,64)], [(5,6,7,8,9),(10,11,12,13,14),(15,16,17,18,19),(20,21,22,23,24),(25,26,27,28,29),(30,31,32,33,34),(35,36,37,38,39),(40,41,42,43,44),(45,46,47,48,49),(50,51,52,53,54),(55,56,57,58,59),(60,61,62,63,64)])
Matrix representation ►G ⊆ GL8(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 31 | 29 | 18 | 0 | 0 | 0 | 0 |
10 | 0 | 18 | 12 | 0 | 0 | 0 | 0 |
29 | 18 | 0 | 31 | 0 | 0 | 0 | 0 |
18 | 12 | 10 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 23 | 13 | 11 | 0 |
0 | 0 | 0 | 0 | 13 | 18 | 0 | 11 |
0 | 0 | 0 | 0 | 11 | 0 | 18 | 28 |
0 | 0 | 0 | 0 | 0 | 11 | 28 | 23 |
7 | 0 | 11 | 3 | 0 | 0 | 0 | 0 |
0 | 7 | 3 | 30 | 0 | 0 | 0 | 0 |
30 | 38 | 34 | 0 | 0 | 0 | 0 | 0 |
38 | 11 | 0 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 4 | 31 |
0 | 0 | 0 | 0 | 34 | 0 | 31 | 37 |
0 | 0 | 0 | 0 | 37 | 10 | 0 | 7 |
0 | 0 | 0 | 0 | 10 | 4 | 34 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 4 | 16 | 13 | 0 | 0 | 0 | 0 |
37 | 0 | 13 | 25 | 0 | 0 | 0 | 0 |
16 | 13 | 0 | 4 | 0 | 0 | 0 | 0 |
13 | 25 | 37 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 25 | 12 | 0 | 3 |
0 | 0 | 0 | 0 | 12 | 16 | 38 | 0 |
0 | 0 | 0 | 0 | 0 | 38 | 25 | 12 |
0 | 0 | 0 | 0 | 3 | 0 | 12 | 16 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
29 | 18 | 0 | 31 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 | 0 | 0 |
10 | 0 | 18 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 | 23 | 13 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 28 | 23 | 0 | 30 |
G:=sub<GL(8,GF(41))| [40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[0,10,29,18,0,0,0,0,31,0,18,12,0,0,0,0,29,18,0,10,0,0,0,0,18,12,31,0,0,0,0,0,0,0,0,0,23,13,11,0,0,0,0,0,13,18,0,11,0,0,0,0,11,0,18,28,0,0,0,0,0,11,28,23],[7,0,30,38,0,0,0,0,0,7,38,11,0,0,0,0,11,3,34,0,0,0,0,0,3,30,0,34,0,0,0,0,0,0,0,0,0,34,37,10,0,0,0,0,7,0,10,4,0,0,0,0,4,31,0,34,0,0,0,0,31,37,7,0],[0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0],[0,37,16,13,0,0,0,0,4,0,13,25,0,0,0,0,16,13,0,37,0,0,0,0,13,25,4,0,0,0,0,0,0,0,0,0,25,12,0,3,0,0,0,0,12,16,38,0,0,0,0,0,0,38,25,12,0,0,0,0,3,0,12,16],[1,29,0,10,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,18,0,0,0,0,0,31,40,12,0,0,0,0,0,0,0,0,1,30,0,28,0,0,0,0,0,0,0,23,0,0,0,0,0,23,0,0,0,0,0,0,0,13,1,30] >;
Character table of C22.58C24⋊C5
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | |
size | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ54 | ζ52 | ζ53 | ζ5 | ζ5 | ζ5 | ζ53 | ζ54 | ζ54 | ζ54 | ζ53 | ζ52 | ζ52 | ζ52 | linear of order 5 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ52 | ζ5 | ζ54 | ζ53 | ζ53 | ζ53 | ζ54 | ζ52 | ζ52 | ζ52 | ζ54 | ζ5 | ζ5 | ζ5 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ5 | ζ53 | ζ52 | ζ54 | ζ54 | ζ54 | ζ52 | ζ5 | ζ5 | ζ5 | ζ52 | ζ53 | ζ53 | ζ53 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ53 | ζ54 | ζ5 | ζ52 | ζ52 | ζ52 | ζ5 | ζ53 | ζ53 | ζ53 | ζ5 | ζ54 | ζ54 | ζ54 | linear of order 5 |
ρ6 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | symplectic lifted from 2- (1+4)⋊C5, Schur index 2 |
ρ7 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | symplectic lifted from 2- (1+4)⋊C5, Schur index 2 |
ρ8 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | symplectic lifted from 2- (1+4)⋊C5, Schur index 2 |
ρ9 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | ζ5 | ζ52 | -ζ52 | ζ52 | -ζ5 | ζ53 | -ζ53 | ζ53 | ζ5 | ζ54 | -ζ54 | ζ54 | complex lifted from 2- (1+4)⋊C5 |
ρ10 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | -ζ53 | -ζ5 | ζ5 | ζ5 | ζ53 | -ζ54 | ζ54 | ζ54 | ζ53 | -ζ52 | ζ52 | ζ52 | complex lifted from 2- (1+4)⋊C5 |
ρ11 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | -ζ5 | -ζ52 | ζ52 | ζ52 | ζ5 | -ζ53 | ζ53 | ζ53 | ζ5 | -ζ54 | ζ54 | ζ54 | complex lifted from 2- (1+4)⋊C5 |
ρ12 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | ζ52 | ζ54 | -ζ54 | ζ54 | -ζ52 | ζ5 | -ζ5 | ζ5 | ζ52 | ζ53 | -ζ53 | ζ53 | complex lifted from 2- (1+4)⋊C5 |
ρ13 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | -ζ54 | -ζ53 | ζ53 | ζ53 | ζ54 | -ζ52 | ζ52 | ζ52 | ζ54 | -ζ5 | ζ5 | ζ5 | complex lifted from 2- (1+4)⋊C5 |
ρ14 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | ζ53 | ζ5 | ζ5 | -ζ5 | ζ53 | ζ54 | ζ54 | -ζ54 | -ζ53 | ζ52 | ζ52 | -ζ52 | complex lifted from 2- (1+4)⋊C5 |
ρ15 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | ζ52 | ζ54 | ζ54 | -ζ54 | ζ52 | ζ5 | ζ5 | -ζ5 | -ζ52 | ζ53 | ζ53 | -ζ53 | complex lifted from 2- (1+4)⋊C5 |
ρ16 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | ζ54 | ζ53 | -ζ53 | ζ53 | -ζ54 | ζ52 | -ζ52 | ζ52 | ζ54 | ζ5 | -ζ5 | ζ5 | complex lifted from 2- (1+4)⋊C5 |
ρ17 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -ζ5 | -ζ53 | -ζ54 | -ζ52 | ζ53 | ζ5 | -ζ5 | ζ5 | -ζ53 | ζ54 | -ζ54 | ζ54 | ζ53 | ζ52 | -ζ52 | ζ52 | complex lifted from 2- (1+4)⋊C5 |
ρ18 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -ζ53 | -ζ54 | -ζ52 | -ζ5 | ζ54 | ζ53 | ζ53 | -ζ53 | ζ54 | ζ52 | ζ52 | -ζ52 | -ζ54 | ζ5 | ζ5 | -ζ5 | complex lifted from 2- (1+4)⋊C5 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | -ζ54 | -ζ52 | -ζ5 | -ζ53 | -ζ52 | -ζ54 | ζ54 | ζ54 | ζ52 | -ζ5 | ζ5 | ζ5 | ζ52 | -ζ53 | ζ53 | ζ53 | complex lifted from 2- (1+4)⋊C5 |
ρ20 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | -ζ52 | -ζ5 | -ζ53 | -ζ54 | ζ5 | ζ52 | ζ52 | -ζ52 | ζ5 | ζ53 | ζ53 | -ζ53 | -ζ5 | ζ54 | ζ54 | -ζ54 | complex lifted from 2- (1+4)⋊C5 |
ρ21 | 5 | 5 | 5 | 5 | 1 | -3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ22 | 5 | 5 | 5 | 5 | 1 | 1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
ρ23 | 5 | 5 | 5 | 5 | -3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C24⋊C5 |
In GAP, Magma, Sage, TeX
C_2^2._{58}C_2^4\rtimes C_5
% in TeX
G:=Group("C2^2.58C2^4:C5");
// GroupNames label
G:=SmallGroup(320,1012);
// by ID
G=gap.SmallGroup(320,1012);
# by ID
G:=PCGroup([7,-5,-2,2,2,2,-2,-2,561,456,947,387,184,1543,1466,745,360,2629,851,718,375,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=g^5=1,c^2=f^2=a,d^2=e^2=b,a*b=b*a,d*c*d^-1=a*c=c*a,f*d*f^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=g*f*g^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,f*c*f^-1=a*b*c,g*c*g^-1=a*b*c*d*e,e*d*e^-1=a*b*d,g*d*g^-1=a*b*c*d,e*f=f*e,g*e*g^-1=b*c*d*e*f>;
// generators/relations